Cyclooxygenase-2 inhibitors ( COX-2 inhibitors), also known as coxibs, are a type of nonsteroidal anti-inflammatory drug (NSAID) that directly target cyclooxygenase-2 (COX-2), an enzyme responsible for inflammation and pain. Targeting selectivity for COX-2 reduces the risk of and is the main feature of celecoxib, rofecoxib, and other members of this drug class.
After several COX-2–inhibiting drugs were approved for marketing, data from clinical trials revealed that COX-2 inhibitors caused a significant increase in heart attacks and strokes, with some drugs in the class having worse risks than others. Rofecoxib (sold under the brand name Vioxx) was taken off the market in 2004 because of these concerns, while celecoxib (sold under the brand name Celebrex) and traditional NSAIDs received on their labels. Many COX-2–specific inhibitors have been removed from the US market. As of December 2011, only Celebrex (celecoxib) is still available for purchase in the United States. In the European Union, celecoxib, parecoxib, and etoricoxib have been approved for use by the European Medicines Agency.
Paracetamol (acetaminophen) inhibits COX-2 almost exclusively within the brain and only minimally in the rest of the body, although it is not considered an NSAID, since it has only minor anti-inflammatory activity.
NSAIDs are often used in treatment of acute gout attacks. COX-2 inhibitors appear to work as well as nonselective NSAIDs, such as aspirin. They have not been compared to other treatment options such as colchicine or glucocorticoids.
Additional support for the idea that other targets besides COX-2 are important for celecoxib's anticancer effects has come from studies with chemically modified versions of celecoxib. Several dozen analogs of celecoxib were generated with small alterations in their chemical structures. Some of these analogs retained COX-2 inhibitory activity, whereas many others didn't. However, when the ability of all these compounds to kill tumor cells in cell culture was investigated, it turned out that the antitumor potency did not at all depend on whether or not the respective compound could inhibit COX-2, showing that inhibition of COX-2 was not required for the anticancer effects. One of these compounds, 2,5-dimethyl-celecoxib, which entirely lacks the ability to inhibit COX-2, actually turned out to display stronger anticancer activity than celecoxib itself and this anticancer effect could also be verified in highly drug-resistant tumor cells and in various animal tumor models.
The cause of the cardiovascular problems became, and remains, a subject of intensive research. As of 2012 results have been converging on the hypothesis that the adverse cardiovascular effects are most likely due to inhibition of COX-2 in , which leads to a decrease in the production of prostacyclin in them. Prostacyclin usually prevents platelet aggregation and vasoconstriction, so its inhibition can lead to excess clot formation and higher blood pressure.
The basic research leading to the discovery of COX-2 inhibitors has been the subject of at least two lawsuits. Brigham Young University has sued Pfizer, alleging breach of contract from relations BYU had with the company at the time of Simmons's work. A settlement was reached in April 2012 in which Pfizer agreed to pay $450 million. The other litigation is based on United States Pat. No. 6,048,850 owned by University of Rochester, which claimed a method to treat pain without causing gastro-intestinal distress by selectively inhibiting COX-2. When the patent issued, the university sued Searle (later Pfizer) in a case called, University of Rochester v. G.D. Searle & Co., 358 F.3d 916 (Fed. Cir. 2004). The court ruled in favor of Searle in 2004, holding in essence that the university had claimed a method requiring, yet provided no written description of, a compound that could inhibit COX-2 and therefore the patent was invalid.
In the course of the search for a specific Enzyme inhibitor of the negative effects of that spared the positive effects, it was discovered that prostaglandins could indeed be separated into two general classes that could loosely be regarded as "good prostaglandins" and "bad prostaglandins", according to the structure of a particular enzyme involved in their biosynthesis, cyclooxygenase.
Prostaglandins whose synthesis involves the Cyclooxygenase enzyme, or COX-1, are responsible for maintenance and protection of the gastrointestinal tract, while prostaglandins whose synthesis involves the cyclooxygenase-II enzyme, or COX-2, are responsible for inflammation and pain.
The existing nonsteroidal anti-inflammatory drugs () differ in their relative specificities for COX-2 and COX-1; while aspirin and ibuprofen inhibit COX-2 and COX-1 enzymes, other NSAIDs appear to have partial COX-2 specificity, particularly meloxicam (Mobic). Aspirin is ≈170-fold more potent in inhibiting COX-1 than COX-2. Studies of meloxicam 7.5 mg per day for 23 days find a level of gastric injury similar to that of a placebo, and for meloxicam 15 mg per day a level of injury lower than that of other NSAIDs; however, in clinical practice meloxicam can still cause some Peptic ulcer complications.
Valdecoxib and rofecoxib were about 300 times more potent at inhibiting COX-2 than COX-1, but too toxic for the heart, suggesting the possibility of relief from pain and inflammation without gastrointestinal irritation, and promising to be a boon for those who had previously experienced adverse effects or had Comorbidity that could lead to such complications. Celecoxib is approximately 30 times more potent at inhibiting COX-2 than COX-1, with etoricoxib being 106 times more potent.
Sales and marketing efforts were supported by two large trials, the Celecoxib Long-term Arthritis Safety Study (CLASS) in JAMA, and the Vioxx Gastrointestinal Outcomes Research (VIGOR). The VIGOR trial was later proven to have been based on faulty data, and Vioxx was eventually withdrawn from the market.
The VIGOR trial results were published in 2000 in the New England Journal of Medicine Bombardier and her research team claimed that there was "an increase in myocardial infarction in the patients given rofecoxib (0.4%) compared with those given naproxen (0.1%)" and "patients given naproxen experienced 121 side effects compared with 56 in the patients taking rofecoxib," a "marvellous result for Merck" which "contributed to huge sales of rofecoxib." Merck's scientists incorrectly interpreted the finding as a protective effect of naproxen, telling the FDA that the difference in heart attacks "is primarily due to" this protective effect. In September 2001, the United States Food and Drug Administration (FDA) sent a warning letter to the CEO of Merck, stating, "Your promotional campaign discounts the fact that in the VIGOR study, patients on Vioxx were observed to have a four to five fold increase in myocardial infarctions (MIs) compared to patients on the comparator nonsteroidal anti-inflammatory drug (NSAID), Naprosyn (naproxen)." This led to the introduction, in April 2002, of warnings on Vioxx labeling concerning the increased risk of cardiovascular events (heart attack and stroke). By 2005 The New England Journal of Medicine published an editorial accusing the Bombardier et al. of deliberately withholding data.
Claire Bombardier, a University of Toronto rheumatologist, had claimed that the VIGOR trial showed that Vioxx 50 mg/day had benefits over naproxen for rheumatoid arthritis, specifically that Vioxx reduced the risk of symptomatic ulcers and clinical upper gastrointestinal events (perforations, obstructions and bleeding) by 54%, to 1.4% from 3%, the risk of complicated upper gastrointestinal events (complicated perforations, obstructions and bleeding in the upper gastrointestinal tract) by 57%, and the risk of bleeding from anywhere in the gastrointestinal tract by 62%. An enormous marketing effort capitalized on these publications; Vioxx was the most heavily advertised prescription drug in 2000, and Celebrex the seventh, according to IMS Health.
COX-2 up-regulation has also been linked to the phosphorylation and activation of the E3 ubiquitin ligase HDM2, a protein that mediates p53 ligation and tagged destruction, through ubiquitination. The mechanism for this neuroblastoma HDM2 hyperactivity is unknown. Studies have shown that COX-2 inhibitors block the phosphorylation of HDM2 preventing its activation. In vitro, the use of COX-2 inhibitors lowers the level of active HDM2 found in neuroblastoma cells. The exact process of how COX-2 inhibitors block HDM2 phosphorylation is unknown, but this mediated reduction in active HDM2 concentration level restores the cellular p53 levels. After treatment with a COX-2 inhibitor, the restored p53 function allows DNA damaged neuroblastoma cells to commit suicide through apoptosis reducing the size of growth of the tumor.
|
|